Multi-Growth Factor Releasing Hydrogel System Controlled by DNA Hybridization
“Cells as building blocks”

“Polymer scaffolds as blueprints”
Limitations in the Field

- Lack of Suitable Methods to Delivery GF *in vivo* (Kasemkijwattana et al., 2000)

- Delivery Requirements:
 - 2 GF simultaneously
 - adjustable rates
 - prolonged release
 - minimal degradation

(Bourque et al., 1993; Bostrom et al., 1995; Yu et al., 2002; Chen et al., 2009)
Develop and test an affinity-based release system for releasing multiple Growth Factors (GF) *in vivo*.
Capitalizing on chemical interactions between the drug and the delivery system to control drug release rates.

(Wang and von Recum, 2011)
Affinity-Based Release System
Hydrogel

Advantages:
- Mechanical strength
- Degradability
- Biocompatibility
- Injectable formulation
 (Crompton et al., 2007; Costa et al., 2011)

Our 2-Pronged Attack
- GF loading device
- Tissue scaffold

Collagen hydrogel

DNA Hybridization

Factors:

- pH
- Salt concentration
- GC content
- Strand length
- Temperature

(Clausen-Schaumann et al., 2000; Chalikian et al., 1999)
The “Big” Picture

Key:
- HT DNA
- LT DNA
- GF₁
- GF₂

Hydrogel
Experimental Design

1) Confirmation of Chemistry in 2-D Model
2) Study of DNA Melting Temperatures
3) Growth Factor Release
Converting inorganic glass to useful thiol
1) Confirmation of Chemistry in 2-D Model

Adding hydrogel followed by one strand of DNA

Converting inorganic glass to useful thiol
1) Confirmation of Chemistry in 2-D Model

Introducing **growth factors** synthesized with the complementary DNA

Adding **hydrogel** followed by one strand of **DNA**

Converting inorganic glass to useful **thiol**
2) Study of DNA Melting Temperatures

- Tm: 50% duplex
- Gradual heating (30-80°C)
- Hypochromism
- DNA absorbance at 260nm

Table 1: Oligonucleotide Label Key

High Melting Temperature Strands (HT)	HTA	GGC TGT GCC CGG TCG
Low Melting Temperature Strands (LT)	LTA	AAA GAT AAG TAA CAA
	HTB	CGA CCG GCC ACA GCC
	LTB	TIG TIA CTT ATC TTT

*All strands contain a thiol group at the end of the sequence

http://www.ifa.hawaii.edu/UHNAIimages/boal-figures/figure22.jpg
2) Study of DNA Melting Temperatures

![Graph showing absorption at 260 nm vs. temperature for DNA samples with different GC content.](image)

DNA: LTA - LTB

$T_m = 44.43$

Low GC

DNA: HTA - HTB

$T_m = 65.98$

High GC
3) Growth Factor Release
Conclusions

- Successful in vitro release results!
 - Novel method of DNA-affinity release
 - Significant variations in release rates

- Making strides in the developing field of Tissue Engineering
What’s Next?

- Further *in vitro* testing
 - Other DNA sequences
 - Multiple fluorescently labeled GFs
 - Real GFs
- *In vivo* testing
 - Animals followed by humans

